1. Iniciokeyboard_arrow_right
  2. Investigaciónkeyboard_arrow_right
  3. Paper: A modified CTGAN-plus-features-based method for optimal asset allocation

Paper: A modified CTGAN-plus-features-based method for optimal asset allocation

8 de abril del 2024


Autores/Authors: José-Manuel Peña, Fernando Suárez, Omar Larré, Domingo Ramírez, Arturo Cifuentes

 

Abstract:

We propose a new approach to portfolio optimization that utilizes a unique combination of synthetic data generation and a CVaR-constraint. We formulate the portfolio optimization problem as an asset allocation problem in which each asset class is accessed through a passive (index) fund. The asset-class weights are determined by solving an optimization problem which includes a CVaR-constraint. The optimization is carried out by means of a Modified CTGAN algorithm which incorporates features (contextual information) and is used to generate synthetic return scenarios, which, in turn, are fed into the optimization engine. For contextual information, we rely on several points along the U.S. Treasury yield curve. The merits of this approach are demonstrated with an example based on 10 asset classes (covering stocks, bonds, and commodities) over a fourteen-and-half-year period (January 2008–June 2022). We also show that the synthetic generation process is able to capture well the key characteristics of the original data, and the optimization scheme results in portfolios that exhibit satisfactory out-of-sample performance. We also show that this approach outperforms the conventional equal-weights (1/N) asset allocation strategy and other optimization formulations based on historical data only.

Keywords: Asset allocation, Portfolio optimization, Portfolio selection, Synthetic data, Synthetic returns, Machine learning, Features, Contextual information, GAN, CTGAN, Neural networks

Citation: Peña, J. M., Suárez, F., Larré, O., Ramírez, D., & Cifuentes, A. (2024). A modified CTGAN-plus-features-based method for optimal asset allocation. Quantitative Finance24(3–4), 465–479. https://doi.org/10.1080/14697688.2024.2329194

Fecha de Publicación (online/ahead of print): 08 Abril, 2024.

Revista: Quantitative Finance, Volume 24, 2024 - Pag.465–479 - Issue 3-4

DOI:  https://doi.org/10.1080/14697688.2024.2329194

Visita el sitio web de publicación del Paper.

Información

scienceTipo de investigación

Research Papers and Notes

styleCategorías

Finanzas

publicColaboración con Instituciones o Centros UC

Centro Latinoamericano de Políticas Económicas y Sociales, CLAPES UC
imagen de card

Arturo Cifuentes

Ing. Civil, U. de Chile; Ph.D. en Mecánica Aplicada, Caltech; MBA en Finanzas, NYU https://arturocifuentes.com
searchVer más de este autor
Clapes UC | Centro Latinoamericano de Políticas Económicas y Sociales
Clapes UC
Avenida Libertador Bernardo O'Higgins 440, Piso 13. Santiago de Chile
phone +56 (02) 2354 2224